Magnesium phosphate cement (MPC) possesses many excellent engineering properties. The applications of MPC as a repair and quick-construction material have received significant research attention in recent years. The effects of nano-silicon dioxide, nano-aluminum oxide (Al2O3), and nano-iron oxide (Fe2O3) on the compressive strength and the fluidity of the MPC-based mortar are experimentally investigated in this study. The micromorphology and composition of the MPC-based mortar with nanoparticles were captured using scanning electron microscopy and X-ray diffraction, respectively. It was found that the addition of the nanoparticles significantly shortened the setting time of MPC and decreased the fluidity of the MPC-based mortar. The addition of the appropriate amount of nano-Fe2O3 and nano-Al2O3 improved the compressive strength of the MPC-based mortar. The optimal replacement ratios of the nano-Fe2O3 and nano-Al2O3 were 2 % and 4 %, respectively. The reaction product of aluminum phosphate x-hydrate (AlPO4 xH2O) was found in the MPC matrix with the addition of nano-Al2O3, which improved the compressive strength of the MPC-based mortar.

All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.
You do not currently have access to this content.